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institute for Management Science and Engineering

Program in Logistics

CATEGORY ANALYSIS OF THE MARINE CORPS

COMBAT READINESS EVALUATION SYSTEM (MCCRES)

by

S. Zacks, W. H. Marlow and Zeev Barzily

1. Introduction

The Marine Corps Combat Readiness Evaluation System (MCCRES) and

various analyses have been discussed recently in a series of papers by

Barzily, Catalogne and Marlow [2], Zacks and Marlow [7] and Barzily,

Marlow, and Zacks [8]. In the present paper we conduct statistical

analysis of MCCRES from the point of view of the ten categories

introduced by Barzily [1]. As in the previous work we restrict our

present attention to Volume II of MCCRES, which deals with infantry

battalions and contains 800 different requirements. The category

approach of Barzily classifies all requirements into the following

ten categories.

1. REPORTING to higher levels of command

2. PREPARING for operation

3. COMMUNICATING

4. PERFORMING as Marines

5. DELIVERING supporting fire

6. PLANNING of operations

7. CONFORMING to doctrine
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8. EXECUTING operations

9. PROVIDING combat service support

10. SUPERVISING required actions of individual Marines

In a given evaluation an infantry battalion is evaluated on a subset of

the 800 requirements. That is, due to time, budget, and other constraints,

not all 800 requirements are applicable. The battalion is given a score

of "Yes" in case a requirement is fulfilled satisfactorily, and a score of

"No" otherwise. The basic assumption in our category approach is that the

probability of "Yes" for a given unit is the same for all the applicable

requirements of the same category (see Appendix 1). These probabilities

may change from 3ne category to another. The vector of the ten probabili-

ties, corresponding to the ten categories, is a parametric vector which

characterizes the unit at that particular evaluation. Different units

usually have different characterizing parametric vectors and the same unit

may have different characterizing parametric vectors in different evalua-

tions. In addition to the parametric vector of "Yes" probabilities, there

are several other interesting statistical features of the data. The pro-

portion of "Yes's" among the applicable requirements of different categories

in the same evaliation are not independent. It is interesting to study the

correlation structure between these categories. In the present study we

present statistical iodels and develop procedures designed to estimate

interesting model parameters. We base the analysis on the results of

N = 27 evaluations. The statistical methods developed here have a wide

range of possible applications for the analysis of categorical data in

which a different number of independent Bernoulli trials are performed in

each category, but the proportions of successes in different categories

are dependent va-iables.

2. The Structure of the Data and the Statistical Model

Let N designate the number of evaluations, N = 27, and k designate

the number of categories, k = 10 . Let X , i=l,...,N , j=l,...,k

ij r I
designate the number of "Yes's" among the applicable requirements of the

-2-
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j-th category in the i-th evaluation. Let Mij , i=l,...,N , j-l,...,k

designate the cocresponding number of applicable requirements. In Table

2.1 we present the values of X.. and M.. which have been compiled from
ij ij

MCCRES data files. All the analyses in the present paper are based on the

data in this table.

Let X. (i=l,...,N) designate the vector of k X - values corre-

sponding to evaluation i , and M. the vectors of corresponding M - values.

The fundamental assumptions of the statistical model are:

A.1 X , '' are independent random vectors;

A.2 The marginal distribution of X.. is binomial,13

B(Mij ,) ij) ,for all i=l,...,N , and j=l,...,k

0.. designates the probability of "Yes" for allii

the requirements in evaluation i and category j

In Appendix 1 we test a null hypothesis which is based on assumption

A.2. This hypothesis is accepted by the data in such a way to provide

substantial empirical verification.

The multivariate distributions of Xi I i=l,...,N , are specified

indirectly by considering first the following transformations. Let

Y.. = 2 sin-1 ( j +12) i=l,...,N (2.1)1" (4Mij + 1 )' j=l,...,k

These transformations are known as variance stabilizing transformations for

binomial random variables (see Johnson and Kotz [3; p. 65], who suggest

the transformation Y = 2 sin 1A-6 , where e = (x + 3/8)/(M + 3/4)

The asymptotic properties of (2.1) and of this one are the same).

-3-
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Table 2.1

Total number of satisfied and applicable requirements
by category and evaluation*

EVAL/CAT. 1 2 3 4 5 6 7 a 9 10

1 62 44 40 14 55 100 50 53 24 13

67 54 40 23 69 110 63 73 32 17

2 79 70 42 18 67 133 65 97 31 17

80 76 44 24 72 140 73 100 37 20

3 41 19 26 12 45 38 44 47 15 12

42 26 28 21 56 45 53 54 16 14

4 60 33 25 20 53 68 49 68 18 16

62 36 31 24 55 71 54 72 19 16

5 35 34 35 21 52 93 48 46 18 12

52 44 37 24 54 99 54 67 21 14

6 52 29 20 23 57 60 59 62 18 18

55 29 29 24 63 63 61 67 18 18

7 44 41 32 15 63 90 47 50 30 13

47 46 34 21 64 93 51 55 31 17

8 29 18 28 12 48 40 34 65 7 9

60 48 32 22 63 81 57 87 14 15

9 64 41 36 25 64 78 44 93 16 18

71 48 37 26 64 90 57 104 18 18

10 64 48 35 19 60 99 45 67 25 17

70 55 38 24 67 119 61 77 30 17

11 15 4 23 18 56 15 30 17 13 11

15 4 23 18 56 15 31 17 13 12

12 12 5 14 16 35 10 16 12 8 7

14 8 17 16 54 16 30 18 10 10

13 11 11 5 6 6 15 8 36 2 5

11 11 6 9 6 16 10 37 2 5

14 54 31 23 17 57 55 49 62 16 13

54 35 27 25 59 62 57 70 17 18

15 41 21 13 16 4 36 33 44 13 11

42 23 17 23 4 36 35 47 13 16

16 49 35 29 13 59 73 59 63 18 12

54 38 32 23 59 74 63 70 18 16

17 44 29 18 16 9 52 44 54 18 13

47 30 21 23 9 52 45 55 19 13

18 69 40 35 26 62 76 66 87 22 14

69 41 36 28 63 78 68 90 22 16

19 78 43 38 27 64 90 60 92 19 17

79 51 38 27 65 98 71 108 20 17

20 48 26 25 13 58 49 38 56 16 17

54 31 29 24 61 61 56 67 18 18

21 18 5 14 4 41 14 22 12 12 9

24 11 21 17 56 22 36 28 14 15

22 71 35 29 21 52 85 45 85 24 19

73 37 34 25 66 92 54 90 24 20

23 71 41 33 26 63 87 63 93 21 15

73 41 36 28 64 88 68 97 23 16

24 47 30 28 22 55 61 52 49 13 16

49 31 30 25 57 63 57 58 15 17

25 44 32 29 16 31 56 50 47 15 16

48 34 32 25 61 64 58 58 16 18

26 34 29 24 21 52 48 32 42 15 14

37 32 27 23 58 56 40 54 15 15

27 100 58 32 27 69 121 75 136 26 l8

101 58 38 29 71 122 78 138 28 19

*The upper number in each cell represents the total number of satisfied

requirements; the lower number represents the total. number of applicable

requirements.
-4-
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For large values of Mij the random variables Yij are distributed

approximately normally, with mean j.. = 2 sin-1 @ and variance
1J i

l/Mij . Let Yi = (Yil '...'Y )  be the k-variate vector of the
'l, i ik~

transformed X-values of the i-th evaluations. According to assumption

A.1, Y Y are independent random vectors. We introduce here a third

assumption concerning the muitivariate distribution of Y. (i=l,...,N)

A.3 The random vectors Y. have multivariate normal

distributions with means ri = (n ,''''.k) and

covariance matrices i = (i. j* '
)

where
(

M.. , if j=j'

P j, / Mi .jMij, , if j+j ' (2.2)

p., is the correlation between Yij and Yij'

It is assumed that the correlations pjj, are the same for all evaluations.

In Appendix 2 we show that pjj are asymptotically equivalent to the

correlations between the proportions of Yes's, 0.. = X. ./M..iJ iJ 1J

3. The Bayesian Framework

The Bayesian model assumes that the characterizing parametric vectors

6 of the different evaluations vary according to a (prior) distribution

of all possible evaluations. This is a model of a superpopulation which

makes it possible to relate the information obtained from all evaluations

in a consistent manner. Following the model developed in the previous

section, we present here the Bayesian model in terms of the distributions

of Y (i=l,...,N)

-5-
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K We assumc that the mean vectors T1. of the distributions of

Y2 (i=l,...,N) have a prior normal distribution with mean vector p and
± I

diagonal covariance matrix (D) . The overall distribution of Y..
ij

where ri are treated as random variables, is called a predictive

distribution. According to the above assumption, the predictive distribu-
tion of each Y. is normal with the same mean, p , and covariance matrix

C\,1

+ (D) (see Zacks [6; p. 296]). The predictive marginal distributions

of the components Yij are normal with means p. (j=l,...,k) and variances

2 1 2
t = - + D. (i=l,...,N , j=l,...,k) . Since we assumed that the

correlations pjj, are the same for all evaluations, we will treat the

vectors q , and the matrices (D) and (R) = (pjj, ; j,j' = 1,...,k) as

unknown but fixed parameters. We remark that the predictive marginal

distributions of Y.. resemble the distributions of the observations in
1ii

Model II of Analysis of Variance (see Zacks [6; p. 79]), in which the

components of variance are lI/Mij (known) and D. (unknown). We

conclude this section by specifying the posterior distributions of nij

given Yij . According to the Bayesian model, the posterior distribution

of ij given Yij is normal with mean

E {ijIYijY = (p + D M ijYij )/(l + DM ij) , (3.1)

and variance

V {pin1Y11 = Dj/(l + MujDj) (3.2)

Notice that the Bayes estimator of I ij for a squared-error loss is given

by (3.1), with a Bayes risk given by (3.2). If p. and D are un-

specified, one can estimate them from the data, to obtain empirical

Bayes estimators of the characterizing parameters (see Zacks [6; p. 321]).

-6-
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4. Bayesian Confidence Inrervals for the Characterizing
Parameters

Bayesian confidence intervals, at level 1-a , for specified para-

meters, are defined as the intervals in the parameter space whose posterior

coverage probabilities, given the sample data, are at least 1-a

According to the model of Section 3, the posterior coverage probability

of the intervals

Tj + D.M. .Y [ D. 11/2i i + i zJ (4.1)1 + L.M.. - Zl-C/2 1 + M.D.
.J ij ij

is (1-a) , where Z is the y-th fractile of the standard normal dis-Y
tribution. We determine for each category empirical estimates of the

prior parameters q. and D. and, by substituting these estimates in
J J

(4.1), we obtain empirical Bayes confidence intervals for nij (i=l,...,N)

The substitution of estimates of n. and D. for the correct values will
i J

generally effect the coverage probabilities. The estimates described below

are consistent, and we expect that, for large values of N , the actual

coverage will be close to the nominal one. In order to provide conserva-

tive intervals, we have used in each category, the Bonferroni method of

simultaneous confidence intervals, for all the N = 27 evaluations (see

Miller [4]). For this purpose we replaced a in (4.1) by a' = c/N

Applying the transformation

0 = sin 2(/2) , (4.2)

which is strictly increasing for 0 < rj < 'r , we can obtain from the

p-confidence intervals e - confidence intervals. These intervals, for

the ten categories and twenty seven evaluations with a = .05 , are

presented in Table 4.1.

-7-
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Table 4.1

CONFIDENCE INTERVALS FOR CAT. C1-C5

1 2 3 4 5
EVAL L U L U L U L U L U

1 0.802 0.987 0.648 0.942 0.849 0.999 0.366 0.882 0.661 0.926

2 0.902 1.000 0.794 0.982 0.802 0.988 0.481 0.942 0.809 0.988
3 0.834 1.000 0.519 0.942 0.751 0.984 0.333 0.872 0.655 0.940
4 0.853 0.999 0.723 0.991 0.683 0.956 0,556 0.972 0.834 0.999

5 0.548 0.881 0.592 0.931 0.782 0.987 0.598 0.984 0.832 0.999
6 0.814 0.995 0.820 1.000 0.625 0.931 0.699 1.000 0.769 0.980
7 0.791 0.995 0.717 0.980 0.772 0.986 0.437 0.935 0.880 1.000
8 0.397 0.749 0.269 0.668 0.723 0.972 0.318 0.855 0.622 0.912
9 0.778 0.977 0.680 0.964 0.807 0.993 0.717 1.000 0.913 1.000

10 0.792 0.983 0.711 0.968 0.763 0.981 0.517 0.958 0.763 0.975
11 0.755 1.000 0.509 1.000 0.794 0.997 0.714 1.000 0.902 1.000
12 0.634 0.997 0.407 0.982 0.679 0.973 0.6f,8 1.000 0.514 0.858

13 0.716 1.000 0.659 1.000 0.668 0.986 0.328 0.969 0.621 1.000
14 0.900 1.000 0.685 0.984 0.704 0.969 0,427 0.909 0.843 0.999
15 0.834 1.000 0.669 0.996 0.658 0.966 0.432 0.922 0.582 1.000

16 0.768 0.985 0.734 0.992 0.743 0.979 0.335 0.860 0.906 1.000
17 0.791 0.995 0.767 1.000 0.698 0.975 0.432 0.922 0.669 1.000
18 0.920 1.000 0.817 1.000 0.804 0.993 0.682 0.995 0.878 1.000

19 0.901 1.000 0.673 0.957 0.844 0.999 0.793 1.000 0.881 1.000
20 0.747 0.979 0.626 0.972 0.712 0.970 0.321 0.843 0.824 0.996
21 0.586 0.965 0.331 0.929 0.621 0.943 0.128 0.711 0.589 0.903
22 0.871 0.999 0.762 0.997 0.712 0.965 0.568 0.973 0.649 0.924
23 0.871 0.999 0.865 1.000 0.757 0.980 0.682 0.995 0.880 1.000
24 0.823 0.998 0.772 1.000 0.758 0.985 0.609 0.985 0.839 0.999
25 0.770 0.990 0.747 0.997 0.743 0.979 0.396 0.890 0.401 0.754
26 0.753 0.994 0.699 0.991 0.724 0.977 0.634 0.994 0.754 0.979
27 0.921 1.000 0.901 1.000 0.709 0.960 0.691 0.995 0.866 0.999

CONFIDENCE INTERVALS FOR CAT. C6-CIO

1 0.807 0.971 0.642 0.921 0.586 0.876 0.771 0.942 0.611 0.962
2 0.872 0.988 0.752 0.966 0.881 0.997 0.789 0.950 0.657 0.973
3 0.675 0.966 0.665 0.946 0.710 0.967 0.804 0.965 0.644 0.979
4 0.844 0.996 0.747 0.979 0.821 0.991 0.808 0.966 0.736 0.997
5 0.840 0.98/ 0.727 0.971 0.545 0.857 0.793 0.958 0.644 0.979
6 0.827 0.996 0.835 0.997 0.791 0.985 0.819 0.971 0.749 0.997
7 0.877 0.997 0.759 0.984 0.755 0.982 0.825 0.970 0.611 0.962
8 0.385 0.704 0.465 0.812 0.616 0.880 0.759 0.944 0.549 0.940
9 0.746 0.954 0.615 0.914 0.783 0.963 0.797 0.961 0.749 0.997

10 0.723 0.924 0.588 0.892 0.736 0.957 0.789 0.952 0.743 0.997
11 0.733 1.000 0.765 0.999 0.737 1.000 0.811 0.970 0.662 0.987
12 0.451 0.950 0.406 0.843 0.470 0.945 0.788 0.960 0.586 0.968
13 0.671 1.000 0.523 0.986 0.801 1.000 0.794 0.966 0.640 0.993
14 0.744 0.974 0.700 0.957 0.746 0.967 0.805 0.965 0.594 0.952
15 0.856 1.000 0.747 0.994 0.775 0.993 0.811 0.970 0.580 0.951
16 0.89' 1.000 0.796 0.987 0.763 0.974 0.819 0.971 0.604 0.961
17 0.895 1.000 0.823 0.999 0.856 1.000 0.808 0.966 0.714 0.996
18 0.876 0.999 0.850 0.997 0.869 0.996 0.826 0.973 0.658 0.980
19 0.812 0.978 0.701 0.944 0.737 0.937 0.809 0.966 0.743 0.997
20 0.654 0.934 0.532 0.863 0.689 0.944 0.797 0.961 0.705 0.989
21 0.464 0.928 0.463 0.863 0.323 0.797 0.792 0.961 0.549 0.940
22 0.815 0.982 0.670 0.947 0.837 0.989 0.829 0.974 0.717 0.990
23 0.909 1.000 0.789 0.983 0.862 0.993 0.804 0.963 0.691 0.989
24 0.851 0.999 0.758 0.980 0.688 0.954 0.793 0.961 0.698 0.989

25 0.733 0.968 0.704 0.958 0.653 0.937 0.804 0.965 0.672 0.981
26 0.704 0.964 0.617 0.943 0.617 0.923 0.814 0.970 0.684 0.988

27 0.933 1.000 0.847 0.994 0.924 0.999 0.810 0.964 0.711 0.990

-8-
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The empirical estimates for q. and D. applied here are:j J

1 N
rj ,N N ij (4.3)

and

1 N ^2 1

D. E -2 - H- I (4.4)
jN [N i= j - j,N 'JN

where [a] = max (a,0) , and H is the harmonic mean of Mij , i.e.,j,N

-1 1 N 1
H- =- . Notice that , is a strongly consistent
J,N N i Mij

estimator of q (approaches fl a.s. as N ') . Assuming that H,
J J j ,N

converges to a limit as N D , D converges to D. as N grows.

The values of fj,N and D.3, N  obtained in this manner are given in

Table 4.2.

Table 4.2

Empirical Estimates

of n. and D.

J j ,ND.
jN Dj,N

1 2.5851 0.0755

2 2.4125 0.1058

3 2.4494 0.0297

4 2.1691 0.1464

5 2.5379 0.0871

6 2.5185 0.0994

7 2.3468 0.0751

8 2.4176 0.0917

9 2.4886 0.0086

10 2.3883 0.0388

-9-
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5. Estimating the Correlations

The marginal bivariate predictive distribution of Yij and YiJ'

for j + j' is normal wiLh p.d.f.

f (Yjj Yij'I; rj I Tj' P 0jj, Dj Div)=

2Tf + Dj Mi + D.M..j l j-

F5 l(5.1)

expi1 M1ij Y - ) +i MiD ( --
2(1-p ,) i I + MijDj,

- 2 + Mi + MjDj

Define the weight functions

M..
W 1] i=l,...,N , j=l,...,K . (5.2)

j 1 + MijDj

If the prior means and variances, rj , D* (j=,... ,k) are known, then, the

predictive quasi-likelihood function of pjj, , given the sample data is

L(p.,jIYi ' Y , i=l,...,N)

2 N/2 iN

, exp 2(- , E iI w j (Y i) 2  +

(5.3)

N 2N l

E W. (Y.- r~) 2  - 2 E'1  y Wl WYY.- 4 ~ .. ,- fl~jI
i=l j ij ) J 1J J]1 I

(5.3) is called a 'quasi-likelihood' since the correct likelihood

function is based on the k-variate distributions of Y''
-l " 'YN

-10-
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In practice, rTj and D. are unknown, we will therefore use thej J

quasi-likelihood function of p j, by substituting in (5.3) estimates of

r. and D. Thus, letJ J

2 N ^^2
S2 W j(Yij - rj) 2 j=l,... ,k

i=l

and (5.4)

N 1 (Yi ^) (Yij ^l ) ~qPjj, = i (= , - ini) (., - fl,) , i~j'

where

N iN

n.= Z W..Y.. W E .. (5.5)
J i=l 13 '3 1 i=l 13

and

Wij M ij /(l + MiD. , N ) (5.6)

The estimator p. ., , which maximizes the log-quasi-likelihood

log (lp2 1 22 2k( j, 2 j) 2 (1-pj 2,) Sil,

(5.7)

2P jj ,P ji,I

is called quasi-maximum likelihood (q.m.l.) estimator of p.j, • The

derivative of k(p) with respect to p is

Z(p) = p(S2 + S2,) - P,(l + P 2
akp NP lp2 1lp (5.8)

1 -p 2  (1-p 2)

- 11 -
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Accordingly, the q.m.l. estimator of p.j, is a solution of the cubic

equation

- 3 + + P - -- 0  (5.9)
Nn n

for which the second derivative of (5.7) is negative. Accordingly, for

given values of Dj, N (j=l,...,k) , we determine Wij (i=,...,Nj j=l,...,k)

and rj. (j=l,...,k) and solve (5.9) by the Newton-Raphson method, starting

with the initial solutions

%j 2 1 2 2pS 2p ,,(S. + s.,) , i=l,...,k (5.10)

In Table 5.1 we provide the initial estimates of the correlations (5.10) and

the final estimates, which are the solutions of (5.9). The estimates of

D. are those given in Table 4.2. Two numbers are given in each cell of the.3

matrix of final estimates of the correlations. The upper number is the

correlation and the lower number is an estimate of its standard error,

namely

(-^2 2 (5.11

S.E. {P ,} (l-p..,) N(l + ^p.,) • (5.11)

Every estimate p, , which, in absolute value, is greater than 2 S.E.{P. ,

is significant.

- 12 -
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Table 5.1

Initial and final estimates of the
correlation parameters

INITIAL ESTIMATES OF CORRELATIONS

1.000 0.765 0.168 0.360 0.373 0.678 0.593 0.692 0.616 0.406
0.765 1.000 0.029 0.442 0.444 0.851 0.781 0.763 0.635 0.593
0.168 0.029 1.000 0.321 0.321 0.183 0.122 0.099 -0.133 0.140
0.360 0.442 0.321 1.000 0.385 0.341 0.336 0.381 0.305 0.565
0.373 0.444 0.321 0.385 1.000 0.613 0.560 0.542 0.364 0.354
0.678 0.851 0.183 0.341 0.613 1.000 0.924 0.721 0.623 0.386
0.593 0.781 0.122 0.336 0.560 0.924 1.000 0.719 0.641 0.333
0.692 0.763 3.099 0.381 0.542 0.721 0.719 1.000 0.491 0.489
0.616 0.635 -0.133 0.305 0.364 0.623 0.641 0.491 1.000 0.322
0.406 0.593 0.140 0.565 0.354 0.386 0.333 0.489 0.322 1.000

FINAL ESTIMATES OF CORRELATIONS

1 1.000 0.760 0.163 0.355 0.348 0.676 0.587 0.694 0.583 0.394
0.0 0.065 0.185 0.158 0.160 0.087 0.109 0.082 0.110 0.151

2 0.760 1.000 0.029 0.443 0.421 0.853 0.781 0.769 0.607 0.587
0.065 0.0 0.192 0.141 0.146 0.040 0.059 0.062 0.104 0.109

3 0.163 0.029 1.000 0.319 0.299 0.183 0.120 0.101 -0.120 0.136
0.185 0.192 0.0 0.165 0.168 0.183 0.188 0.190 0.188 0.187

4 0.355 0.443 0.319 1.000 0.366 0.347 0.339 0.392 0.283 0.561
0.158 0.141 0.165 0.0 0.157 0.160 0.161 0.152 0.170 0.115

5 0.348 0.421 0.299 0.366 1.000 0.596 0.538 0.527 0.322 0.330
0.160 0.146 0.168 0.157 0.0 0.107 0.120 0.123 0.164 0.163

6 0.676 0.853 0.183 0.347 0.596 1.000 0.926 0.732 0.599 0.385
0.087 0.040 0.183 0.160 0.107 0.0 0.020 0.072 0.106 0.153

7 0.587 0.781 0.120 0.339 0.538 0.926 1.000 0.726 0.615 0.328
0.109 0.059 0.188 0.161 0.120 0.020 0.0 0.074 0.102 0.163

8 0.694 0.769 0.101 0.392 0.527 0.732 0.726 1.000 0.469 0.492
0.082 0.062 0.190 0.152 0.123 0.072 0.074 0.0 0.136 0.131

9 0.583 0.607 -0.120 0.283 0.322 0.599 0.615 0.469 1.000 0.294
0.110 0.104 0.188 0.170 0.164 0.106 0.102 0.136 0.0 0.169

10 0.394 0.587 0.136 0.561 0.330 0.385 0.328 0.492 0.294 1.000
0.151 0.1.09 0.187 0.115 0.163 0.153 0.163 0.131 0.169 0.0

- 13 -
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6. Summary

(In the current paper we present confidence intervals for the

category scores as well as the correlations between the scores. The cat-

egory scores help determine the weaknesses and the strengths of the units.

It is important to obtain confidence intervals on these scores because

before planning rcmedial training it is necessary to know whether or not

the scores are meaningful. Thus high correlation between two categories

may indicate that training to improve the performance in one can improve

the performance in the other.

The results in Table 5.1 are intuitively explainable. We obtain

high correlation between the categories evaluating the command's perfor-

mance - Categories 1, 2, 6, 7, and 8. But Categories 3 (Communicating),

4 (Performing as Marines), 5 (Delivering supporting fire) and 10 (Super-

vising required actions of individual Marines) evaluate the performance

of various specific groups and thus each of them cannot be expected to

have high correlation with other categories.

A major finding - see Appendix A - is that, for any one battalion,

the probability of "Yes" for a given requirement is the same for applicable

requirements of the same category. This provides considerable justifica-

tion for the use of 10 category scores as a measure of the overall capability

of the battalion.

- 14 -
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APPENDIX 1

We consider here the question of testing assumption A.2.

TypicaJly, for a given evaluation, there are a certain number of

"Yes's" among the applicable requirements. The question is how to test the

hypothesis that the probability of a "Yes" in a given evaluation depends

only on the category to which the requirement belongs. We have tested

whether this hypothesis is supported by the data, in the following manner.

The data sets corresponding to the N = 27 different evaluations are

arranged according to tasks within 17 different Military Performance Stan-

dards (MPS; see [7]). We therefore considered first the number of "Yes's"

among the applicable requirements within each cell of MPS x category, for

each evaluation. In Table A.1 we present these statistics, as an example,

for EVAL 1. An exact test of the hypothesis that the probability of "Yes"

is the same for all the MPS's within a category would be very difficult

to perform, due to the small number of applicable requirements in each

cell.

Let 0 ik denote the probability of "Yes" in EVAL i, MPS k

Category j (i=l,...,27 ; k=l,... 17 ; j=l,...,10) . We consider the

set of null hypotheses:

H 0ik j = 0ij for all k=l,...,17

at each i=l,...,27 ; j=l,...,10

In the spirit of the Bayesian approach of Section 3, we assume, a priori,

that 6 are independent random variables, having some prior distributions
ikj

(i[j)
H kj (0) (k=l,...,17 ; j=l, .... l0) . If the null hypotheses H are

true for all (i,j) , the following null hypotheses should also be true:

For each j , j=l,...,O

0 kj = j for all k=,...,170 0j

where

P kj= 0 ijk dHkj (Oijk) (A.1.1)

0

15



T-450

Tab le A. 1

The number of satisfied (upper) and applicable (lower)

requirement by XPS and Category for Eval. 1

NPS CATEGORIES

1 2 3 4 5 6 7 8 9 10

2.A.1 9 4 4 11 0 3 14 4 2 6

11 9 4 19 0 3 18 13 3 10

2.A.2 8 0 20 0 7 10 15 9 9 3

9 0 20 1 8 10 18 9 9 3

2.A.3 0 0 2 0 35 3 0 0 0 0

0 0 2 0 48 5 1 0 0 0

2.B.1 6 0 0 0 0 5 2 5 0 2

6 0 0 0 0 5 3 5 1 2

2.B.2 7 5 1 2 0 8 3 7 2 1

7 6 1 2 0 9 3 10 2 1

2.B.3 8 5 3 0 1 2 1 11 0 0

8 5 3 0 1 3 1 14 0 0

2.B.4 9 3 1 0 2 9 5 12 2 1

10 5 1 0 2 11 8 13 2 1

2.B.5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2.B.6 2 3 2 1 2 10 2 0 0 0

2 4 2 1 2 12 3 0 0 0

2.B.7 3 2 0 0 0 6 0 1 2 0

4 2 0 0 0 7 0 2 3 0

2.C.I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2.C.2 3 3 1. 0 0 4 1 1 0 0

3 3 1 0 0 4 1 4 0 0

2.C.3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2.C.4 3 2 0 0 0 3 4 0 0 0

3 2 0 0 0 3 4 0 0 0

2.D.I 2 3 6 0 8 34 0 0 4 0

2 3 6 0 8 34 0 0 4 0

2.D.2 2 6 0 0 0 2 3 3 3 0

2 6 0 0 0 2 3 3 8 0

2.D.3 0 8 0 0 0 1 0 0 0 0

0 9 0 0 0 2 0 0 0 0

VOL. [i 62 44 40 14 55 100 50 53 24 13

67 54 40 23 69 110 63 73 32 17

- 16 -
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Let Yk* and Mk. (k=l,...,17 , j=l,...,l0) be the number of

satisfied and applicable requirements in the k-th MPS and j-th category,

summed over all the 27 evaluations. Let

, 17 ,X *j Xkj
k-i

(j~l,... ,10) (A.1.2)
and

,* = 17 ,

S Mkj
k=l

These statistics are given in Table A.2. We see in Table A.2 that

the values of M.j are large ones, for all j=l,... ,k ; and that Mkj

are generally not too small. We therefore consider, for each hypothesis

H(" 'J ) , the chi-squared statistic
0

* * 2
k*

2 kXk 'kJ' (A.1i.3 )2 kk(jK Ei

k=l E kj

where

*EX" . k=l,..,17

kj kj M j=l,...,10 (A.1.4)

if Mkj >0

kj
, if j = 0 (A.1.5)

17

and k = E Ikj The estimates of the expected values of X.. , under
k=l

the null hypothesis H 'J) , are E . The large sample distribution of
H0  kj

2*
T. is like that of a chi-squared random variable with v. = k. - 1 degrees

2of freedom. In Table A.3 we provide the values of T . and their P - values

P =P IX2 [V > T 2IT 2 ~,..l (A.1.6)
- 17
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Table A.2

The statistics X and M

1 214 158 66 366 0 65 351 216 64 219
1. 245 199 93 472 0 70 413 283 75 258
2 212 0 416 18 162 218 367 204 207 70
2 232 0 447 26 182 239 440 228 225 75
3 0 0 36 0 993 77 21 0 0 0
3 0 0 49 0 1121 106 24 0 0 0
4 63 0 0 7 13 48 24 74 24 18
4 63 0 0 9 13 49 27 77 27 18
5 110 99 11 33 24 142 51 162 20 26
5 121 110 15 37 25 164 54 189 22 34
6 101 64 39 0 10 32 9 180 0 0
6 113 74 40 0 10 37 10 193 0 0
7 225 123 22 0 36 260 178 347 43 20
7 243 140 22 0 40 282 211 372 43 21
8 48 54 30 22 0 97 62 70 7 0
8 53 68 31 26 0 105 72 89 8 0
9 118 89 40 38 30 261 96 86 31 0
9 123 101 44 51 33 293 108 94 32 0

10 81 26 0 0 5 132 0 80 32 0
10 83 26 0 0 5 142 0 95 37 0
11 48 31 i 0 2 74 0 104 0 19
11 48 33 12 0 2 76 0 107 0 21
12 49 87 19 0 13 75 30 59 0 0
12 54 100 19 0 15 90 36 75 0 0
13 21 17 7 0 9 30 4 41 5 0
13 24 18 7 0 10 36 4 44 6 0
14 28 22 0 0 0 37 26 0 0 0
14 30 23 0 0 0 38 32 0 0 0
15 10 19 29 0 40 178 0 0 20 0
15 10 19 30 0 40 181 0 0 20 0
16 8 24 2 0 0 5 8 12 20 0
16 8 24 2 0 0 5 10 12 28 0
17 0 39 3 0 0 11 0 0 0 0
17 0 43 3 0 0 13 .0 0 0 0

TOTAL I 1336 852 731 484 1337 1742 1227 1635 473 372

TOTAL N 1450 978 814 621 1496 1926 1441 1858 523 427

I.

- 18 -
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where X2 [ is a chi-squared random variable, independent of T2

with v. degrees of freedom3

Table A.3

The values of T. and P.J 3

r
*2 2Cat. T. P. Cat. T. P3 J I j

1 2.155 .99987 6 7.371 .96543

2 3.811 .99304 7 1.200 .99996

3 7.326 .88458 8 10.183 .59991

4 1.089 .95507 9 2.292 .99357

5 1.112 .99991 10 1.452 .91854

We see in Table A.3 that each one of the ten null-hypotheses H( " j )

0

is strongly accepted (very high P - values). Let P be the combined

P - value of all the ten tests. According to the Bonferroni inequality [4],

10

P 1 - (1-P.) (A.1.7)
j=l

Thus, according to the values in Table A.3, P > .30988 . Thus, we

simultaneously accept all the ten null hypotheses, with a very high P

value. Note that, if at least one of the null hypotheses hpd been rejected

we should have concluded that assumption A.2 of Section 2 is not supported

by the data. However, since all the null hypotheses have been strongly

accepted, we conclude that the data is in accord with assumption A.2.

- 19 -
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APPENDIX 2

q We show in the present appendix that asymptotically, the correlation

between 0.. and 0.., is equivalent to p..,, for j,j'=l,...,k

The inverse of (2.1) is

0.. = sin2 (Yi 12) ' i=l,...,N (A.2.1)
j=l, ... ,k

where Yij N (nij , M ij-) Expand 0ij around qij to obtain

ij = sin2 (nij/2) + (Yij - nij) sin (Tij /2) cos (q ij /2)

+ Op( ) , (A.2.2)

where 0p(-) is an order-of-magnitude-in-probability symbol (see Zacks

[5; pp. 208j).

A A~ A A (sin
Let e= (eil ' 6' ' and T = sin2 nil "..'^i i i''8k)  ^i 2T '''i2 ) 2

Notice that sin( cos = sin(n) . Let (D)i =

diag {sin(q il),...,sin(lik)}

Then,

^ -~+ 1- (D)i (Yi -Qi) + 0-(1--- (A.2.3)

Thus, as N - , the asymptotic covariance matrix of 0 is

(e) =- (D)i $i(D)i (A.2.4)

where the elements of are specified in (2.2). Accordingly, the

asymptotic variance of 0ij is

- 20 -
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AV sin 2 (n. /M. (A. 2.5)
ij 4 1j ) i

and the asymptotic covariance of 0.. and Oi , j ' , is

AC(O.. , .,) = p , sin(rl ) sin(r)/ X M (A.2.6)
A 1i J4 j ij (ij (A26

Hence, the asymptotic correlation between 0ij and 0ij is p.., , for

all i=l,...,N

- 21 -
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